

Bilkent University

 Department of Computer Engineering

 Senior Design Project

 T2321

 Content Guard

Final Report

21902115, Gülin Çetinus

21902896, Zeynep Derin Dedeler

21802215, Bengisu Buket Kardoğan

21901841, Burak Öztürk

22001769, İlayda Zehra Yılmaz

Ayşegül Dündar

Atakan Erdem, Mert Bıçakçı

Cem Çimenbiçer

13.05.2024

 This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfillment of the requirements of the Senior Design Project course

CS491/2.

Contents:

1. Introduction 3

1.1. Purpose of the System 4

1.2. Design Goals 4

1.2.1. Usability 4

1.2.2. Performance 4

1.2.3. Reliability 5

1.2.4. Extendibility 5

1.2.5. Privacy and Security 5

1.2.6. Scalability 5

1.3 Definitions, Acronyms, and Abbreviations 5

1.4 Overview 6

2. What We Have Done 6

3. Final Architecture and Design Details 8

3.1 Hardware/Software Mapping 8

3.2 Persistent Data Management 9

3.3 Access Control and Security 9

4. Development/Implementation Details 10

4.1 Client Layer 10

4.1.1 Extension Manager 10

4.1.1.1 Extention UI: 11

4.1.1.2 Background: 11

4.1.1.3 Content Script: 11

4.1.2 Home/Report Page 12

4.1.3 Chrome API 12

4.2 Server Layer 12

4.2.1 Backend 13

4.2.1.1 Authentication Manager: 13

4.2.1.2 View/Statistics Manager: 13

4.2.1.3 Database Manager: 13

4.2.1.4 Model Manager: 14

4.2.2 Storage (SQLite) 14

4.2.3 Model (ChatGpt 3.5 Turbo) 14

5. Test Cases and Results 14

6. Maintenance Plan and Details 43

6.1 Software Updates: 43

6.2 Security Measures: 44

6.3 User Support: 44

6.4 System Monitoring and Performance Optimization: 44

6.5 Disaster Recovery and Contingency Planning: 44

7. Other Project Elements 45

7.1. Consideration of Various Factors in Engineering Design 45

7.1.1 Constraints 45

7.1.1.1. Time Constraint 45

7.1.1.2. Resource Constraint 46

7.1.1.3. Compatibility Constraint 46

7.1.1.4. Technology Constraint 46

7.1.1.5. Security Constraint 47

7.1.2 Standards 47

7.1.2.1. Data Security Standards 47

7.1.2.2. User Privacy Standards 47

7.1.2.3. HTML Scraping Standards 48

7.1.2.4 Regulatory Compliance 48

7.1.2.5 Ethical Standards 48

7.2. Ethics and Professional Responsibilities 48

7.3. Teamwork Details 49

7.3.1. Contributing and functioning effectively on the team 49

7.3.2. Helping creating a collaborative and inclusive environment 51

7.3.3. Taking lead role and sharing leadership on the team 51

7.3.4. Meeting objectives 52

7.4 New Knowledge Acquired and Applied 52

8. Conclusion and Future Work 53

9. Glossary 54

10. References 55

1. Introduction

In an era dominated by the digital realm, social media platforms have become

integral agents for information exchange. Among these platforms, Twitter stands out

as a dynamic space characterized by its nonstop updates and diverse content. As

individuals dive into the world of Twitter, they face the following challenges:

navigating the expansive array of content effectively and managing the time devoted

to engaging with Twitter. The widespread use of social media, especially on

platforms such as Twitter, has given rise to a prevalent issue: the unintentional

dissipation of time on topics that may not align with users' primary interests or goals.

As individuals traverse the endless stream of tweets, the risk of diverting attention to

unrelated or unproductive content becomes increasingly apparent. Examples of this

challenge include a student attempting to stay updated on industry trends and being

sidetracked by trending memes or unrelated discussions, leading to a loss of

valuable study time. Similarly, professionals seeking to leverage Twitter for

networking and professional development may encounter challenges. Drawing from

research insights, studies such as the one conducted by Gomez-Rodriguez et al.

(2014) emphasize the impact of information overload on social media users,

highlighting the need for tools and strategies to enhance content relevance and user

productivity [1]. Furthermore, surveys show that two thirds of Twitter users have felt

that they receive too many posts, and over half of Twitter users have felt the need

for a tool to filter out the irrelevant posts [2] [3].

1.1. Purpose of the System

 According to the previous section, we decided to foster a mutually beneficial

relationship between users and their Twitter experience. Our project's name is

"Content Guard," which comes from its fundamental mission to act as a cautious

protector, safeguarding users from the pile of irrelevant or overwhelming content on

Twitter. In our project, the aim is to develop an application and browser extension

that empowers users to efficiently manage and tailor their Twitter experience by

providing functionalities such as content filtering, timer constraints, and keyword-

based filtering to enhance user control over their information consumption and

optimize the relevance of their feed. In this application, the content consumed by a

user will be investigated with the help of artificial intelligence, and the category to

which it belongs will be found. According to these findings, users will be able to filter

specific categories, track the time spent on consuming different categories, and set

several timer constraints. In this way, we will come up with a solution to navigate

Twitter content efficiently and ensure a control over social media interaction [3].

1.2. Design Goals

1.2.1. Usability

 The user interface should allow easy navigation, intuitive controls, and a

seamless user experience in configuring and utilizing the application and browser

extension. It should not be too complicated because Content Guard aims to make

content consumption easier for users of all ages [3].

1.2.2. Performance

 The application's runtime should have optimized content filtering and

processing efficiency to minimize latency and provide a responsive experience for

users [3].

1.2.3. Reliability

 The project to be done should correctly categorize content consumed. The

assigned category to tweets should have a high proper accuracy rate.

Frequent or prolonged downtime of ContentGuard's servers should be

avoided, as it will become part of users' daily lives.

If an error occurs in the program or if the desired operation cannot be

executed, it is essential to provide the user with sufficient and appropriate

information [3].

1.2.4. Extendibility

The application and extension should have a modular architecture enabling

future updates, enhancements, and the addition of new features to adapt to evolving

user needs and platform changes [3].

1.2.5. Privacy and Security

The project should prioritize user privacy by implementing necessary security

measures to protect user data and ensure secure communication between the

extension and the application server [3].

1.2.6. Scalability

ContentGuard will initially be crafted as a proof-of-concept application;

however, our subsequent goal is to broaden its accessibility to a diverse audience.

Hence, scalability is crucial to ensure ContentGuard can cater to a large user base

[3].

1.3 Definitions, Acronyms, and Abbreviations

ML: Machine learning (ML) is a domain within artificial intelligence (AI) and computer

science dedicated to leveraging data and algorithms to enable AI systems to emulate

the learning processes observed in humans, thereby enhancing their accuracy over

time [4].

NLP, Natural Language Processing, lies at the intersection of linguistics, computer

science, and artificial intelligence. It focuses on enabling computers to understand

and analyze human language, effectively processing large volumes of textual data

[5].

Chrome Extension: Chrome extensions are compact software applications designed

to enhance and tailor users' interactions or productivity while navigating through their

Google Chrome web pages. They are crafted using web technologies like HTML,

JavaScript, and CSS.

UI: User interface refers to how users interact with an application or a website [6].

KVKK: The Turkish abbreviation for "Kişisel Verileri Koruma Kurumu" is the "KVKK."

Established under Law No. 6698, the Personal Data Protection Authority is a public

legal entity with administrative and financial autonomy tasked with carrying out duties

pertaining to data protection [7].

TC: Test Case refers to the test unit and the number of the test [3].

1.4 Overview

In this report and subsequent sections, we will provide comprehensive

insights into our existing and evolving software architecture system, subsystem, and

different fields related to our project. This report will give you more detailed

information about the ContentGuard project, offering a more comprehensive

understanding of our system and workload [3].

2. What We Have Done

We have started our Content Guard project’s creative process by identifying

the project’s goal as to improve Twitter’s content relevance to the user’s liking and

time management while on Twitter. We have started our search for the existing

projects and tools for the subject of a Twitter tool that helps user categorize and filter

its content by keyword as well as managing the time while doing this. Not having

found any one of our liking we have decided to create a project of our own. We have

decided that making our project to be an extension was the most useful and best

approach in this regard. Through the extension user would reach the keyword

blockers, category blockers and the times for these blockers using the extension UI.

Then we have decided to create a Home page for our extension and add a button

that led to our Home page in our extension UI by examining other similar extensions.

The purpose of our extension is to manage and tailor their Twitter experience. Then

we have names the project “ContentGuard” by voting among the team members

because of its role as guarding the content of Twitter users to their liking and their

time choices. Defining the functionalities more clearly we have started our research.

Then we have created our extension’s UI. After this, we have genuinely implemented

our extension with backend and frontend.

We have implemented a Chrome API-based extension that was compatible with

browsers with the Chromium engine. This API is used for local storage elements like

user settings and extension activities. We have decided and implemented a server

that runs on a member's computer, uses JavaScript for communication with the

clients, SQLite for databases that are necessary to keep the data, and GPT 3.5

Turbo from OpenAI for NLP tasks that are necessary for blocking. With this we have

decided our technologies.

In our project, database management was implemented as two databases that

manage user data and reports, hashed with user IDs, using SQLite. In this, we have

created an access control system as a single-role user for privacy concerns.

Our Extension Manager oversees extension interfaces, blocking features, and

timers, enabling communication between background and content scripts, and

handling local storage. The Extention UI is created for user to use attributes like

these. Our background uses a content script that is responsible for DOM

manipulation classification requests, tweet content extraction, and data transmission

to the backend. Using Django and Python in the backend we are creating reports

and categorization and blocking attributes. OpenAI 3.5 Turbo as an NLP model for

categorization. We are using OAuth for authentication. Using all of these we have

the workings of our extension and home page.

Our Home Page, is designed for the user to be able to see the data of their usage of

our extension. It reports the keyword, and category blocker’s data in charts and

graphs as well as more about tweets that are blocked. It reports to the user their

usage of that data. It uses Firebase authentication using Twitter account of the user

to log in. And uses cookies to bring the data of the user to this page.

All in all, we have created an extension that effectively categorizes and keyword

blocks our content with timers as well as a home page that reports these datas.

Other than implementing this project we have also documented reports for this

extension with CS 491/2 reports.

3. Final Architecture and Design Details

The final project architecture uses Server-Client architecture that is divided

into two layers: Server Layer and Client Layer. The server layer runs on the main

computer (a member’s computer, which can also be moved to a server with

Windows ops) and manages authentication, users, usage statistics, and databases

while using the NLP model to serve the clients. The client layer runs on the users'

browsers and manages DOM manipulation, restrictive measures (timers and

blockers), user settings, reports, and local storage.

3.1 Hardware/Software Mapping

ContentGuard needs a server as a base of operations for the hardware part of

the server layer. We decided on the server layer to run on a team member’s

computer. The choice is made according to financial constraints and technical

feasibility. However, the system could easily moved to a cloud service (Google Cloud

Platform).

For the software part of the server, JavaScript is used for the most part. This

is to make the communication with the client innately JavaScript-based, like every

Chrome extension. The database is an SQL-based system (SQLite is determined).

As the NLP model, GPT 3.5 Turbo from OpenAI was chosen. This decision was

made because of the speed, the computational power of the model, and it's

financially more sensible. However, for the future of this project, our own model can

be trained, which also won’t be dependent on the site Twitter, which can be applied

to the future sites that we plan to implement (Threads, Reddit, YouTube, etc.).

There is no hardware on the client side of the project other than an electronic

device (PC, Mac, smartphone, etc.) that can run a Chromium-based browser that

supports extensions and has an internet connection.

The software part of the Client Layer is entirely in JavaScript (with HTML and

CSS for UIs). Again, JavaScript will be used at every opportunity to make

communication easier with the extension that must be written in JavaScript.

3.2 Persistent Data Management

There will be two databases at the Server Layer. The user database will keep

general user data like username, ID, mail, personal usage information, generated

reports, and user statistics. The reports will be hashed with user IDs. and stored

separately on a different structure. But both of these use SQLite and are managed

by it.

At the Client Layer, chrome will keep all the persistent data in the browser’s

storage. Chrome API. The data to be kept consists of user settings and the state of

the extension’s activities from closing the browser until the next browser startup.

3.3 Access Control and Security

Our application will operate with a single user role, designated as the regular

user. Regular users are allowed to use the application, and the scope of data access

will be limited to their files and data. Each user can access, modify, and delete their

data reports, timers, and filters. There will be no interaction between users therefore,

users will not be able to access or modify other people’s data. This limitation is set to

meet the users' privacy, and our application does not require user interaction.

Rather than incorporating an admin user interface, we have managed

administrative tasks discreetly through a secure backdoor access mechanism. This

approach ensures that sensitive administrative functions remain accessible solely to

authorized personnel, significantly reducing the potential for unauthorized access or

misuse.

Access to the data will be only through the server, including backdoor admin

interventions. Consumed content data will be transferred to the server to classify the

content under a predefined category, and data will be deleted after achieving that

goal. The resulting classification will be transferred back to the client.

Lastly, each user will have access to their data through unique tokens

provided during the authentication process. These tokens will be stored in Chrome's

cache and utilized as needed. Each token will be distinct and assigned to the user

upon each sign-in and subsequently deleted upon logout to ensure security and

privacy.

4. Development/Implementation Details

This section provides an overview of the services contained within the

previously mentioned layers. Within each layer, there are managers tasked with

overseeing various services specific to that layer, and implementation details will be

explained accordingly.

4.1 Client Layer

 The Client Layer is in charge of the services that run on the client’s browser

via the Chromium extension. This layer accounts for UI interfaces, and its actions

also deal with local storage. It includes one extension manager to provide these

services. It also has a Home/Report Page and a React project website that runs in

the client’s local environment.

4.1.1 Extension Manager

The extension manager oversees the extension interfaces, core blocking

functionalities, and timers. It facilitates the execution of actions, the exchange of

communications between the background and content script modules, and their

interaction with local storage mechanisms. This is contained in the content-guard

subfile of the project, and it contains a React environment, which is the pop-up UI of

the extension.

4.1.1.1 Extention UI:

The Extention UI user interface (UI) serves as a platform through which

clients can configure their settings, implement keyword blockers or category filters,

add timers to them, and administer them accordingly. It consists of several UI

components which run in a React environment. KeywordBlocker.js and

CategoryBlocker.js can access the local storage (Chrome API) to read user settings,

filter settings, and keywords. These files also communicate with the background

script to update the user setting as a result of the user’s interaction with the

Extension UI.

4.1.1.2 Background:

The Background script maintains records of content scripts and orchestrates

the transmission of tweets to the server layer for categorization through

communication with the extension manager. Additionally, it monitors settings

updates and activations of keyword blockers and category filters, triggering events to

be sent to the respective content scripts or broadcast to all the content scripts. The

background script also oversees timing functionalities, calculating the activation

instances of blockers or filters. It also updates the user settings to the local storage

(Chrome API).

4.1.1.3 Content Script:

The Content script is responsible for executing DOM manipulation

functionalities. It extracts tweet content and forwards it to the Backend to obtain the

corresponding tweet category. It also manages classification requests by buffering

them with queues to streamline the process. Subsequently, it collects blocked tweet

information and transmits it to the Backend. Additionally, it responds to requests

originating from the background script and fulfills the requested events. Developed in

JavaScript, it directly interacts with the HTML structure of Twitter. Moreover, the

Content script dispatches data obtained from executing these events to the backend

for further report processing.

4.1.2 Home/Report Page

The Home/Reports Page serves as an interface facilitating the viewing of

provided reports and the submission of requests for new report generation. This

interface presents tables and charts to visualize the client's interaction within

specified categories on Twitter, the keywords they've blocked, categories they

decided to block, and what and how many categories they interacted with. It is a

React project that is currently employed locally, but with the provided server, it can

also be deployed to a wireless connection, which also enables its communication

with the distributed Backend. This page communicates with the Backend for the

authentication of the users and getting their data for the reports that will be

showcased on this page. This page also manages the cookies and interacts with

Firebase for authentication. Firebase communicates with Twitter API and creates the

related cookies according to the permissions. With these cookies, our Home/Report

Page handles navigating to the dashboard and also sends user information to the

Backend.

4.1.3 Chrome API

The local storage system utilizes Google Storage to persistently store user

settings filters with their corresponding categories and keywords, as viewed by the

client. Additionally, it serves as a repository for temporarily storing user’s account

information.

4.2 Server Layer

The Server layer oversees authentication procedures, user management,

tracking usage statistics, and conducting database operations. Additionally, it is

tasked with employing the NLP model for tweet classification purposes.

4.2.1 Backend

The backend system assumes responsibility for receiving requests from the

content script for tweet categorization, responding to these requests, and

coordinating them for multiple users. It retrieves activity data from content scripts,

generates reports, and stores them in the database, transmitting these reports to the

local layer on the Home/Report Page. Additionally, it offers various services,

including statistical computations, database management, model administration, and

user-related operations. This backend system is situated within the server layer

infrastructure. Where it is contained in our project under the content_guard_server

subfile. It uses Django to store the models, and it also utilizes Django functionalities.

It is implemented in Python and uses various libraries of Python.

4.2.1.1 Authentication Manager:

 The Authentication Manager handles user authentication securely. It

integrates OAuth, manages the authentication flow, and securely stores access

tokens. It also handles token renewal error handling and prioritizes security, ensuring

users can securely log in to their Twitter accounts through the extension. This is also

the backend part that communicates with the House/Report Page for the

authentication.

4.2.1.2 View/Statistics Manager:

The View/Statistics Manager oversees the analysis of reports, executing

essential calculations, and conducting thorough analyses. It also seamlessly

interfaces with the database manager to store reports and associated calculations. It

is also the part that communicates with the Home/Report page to send report data

upon request and further report-related functionalities.

4.2.1.3 Database Manager:

This manager oversees database operations, providing essential database

modification and access functionalities. It enables efficient interaction with stored

data, facilitating tasks like insertion, retrieval, updating, and deletion. Additionally, it

ensures data security and integrity, implementing necessary measures to safeguard

sensitive information and comply with regulations.

4.2.1.4 Model Manager:

The Model Manager interfaces with the external NLP model (ChatGpt 3.5 Turbo),

handling the preprocessing of tweet data to align it with the model's requirements. It also

handles the model’s responses and communicates with the database manager to store

related tweet category types with tweet IDs. If the exact tweet is requested again, it can

retrieve the information from the database.

4.2.2 Storage (SQLite)

This database stores individual user data, including unique user IDs and

relevant identification details such as Twitter account names. Additionally, it serves

as a repository for reports and statistics associated with each user, facilitating

comprehensive data management and retrieval functionalities.

4.2.3 Model (ChatGpt 3.5 Turbo)

In the Django application's workflow for tweet content categorization, the

`TweetView` class orchestrates the process upon receiving HTTP POST requests

containing tweet data. Leveraging the capabilities of ChatGPT 3.5 Turbo, the

`categorize_tweet` method is invoked to categorize the tweet content efficiently.

Constructing a message with the tweet content, this method communicates with

ChatGPT 3.5 Turbo via its API endpoint, prompting the model to swiftly process the

input and generate a response containing the predicted category. This seamless

integration enables real-time interaction between the Django application and

ChatGPT 3.5 Turbo, facilitating quick and responsive categorization of tweets. As a

result, the model's optimized latency ensures that tweet categorization occurs

rapidly, enhancing the overall user experience in real-time applications like the

Django web application.

5. Test Cases and Results

Test ID TC-1 Category Functional Severity Major

Objective Test case for registering using Twitter without the Twitter signed-

in browser

Steps 1. Click the “Register with Twitter” button.

2. Enter the valid credentials (username/email and password)

to the opened pop-up or new tab window.

3. Click the “Authorize” button to authorize the extension to

use for registering.

4. Verify the user is registered.

Expected 1. The extension should open a new pop-up for Twitter

authentication.

2. Valid Twitter credentials should result in a successful login

and registration.

3. During the registration, extensions should function without

crashing or freezing.

Date-Result 03/2024 - Pass

Test ID TC-2 Category Functional Severity Major

Objective Test case for registering using Twitter with the Twitter signed-in

browser

Steps 1. Click the “Register with Twitter” button.

2. In the opened pop-up or new tab window, verify the

account to be registered as the signed-in account in the

browser.

3. Click the “Authorize” button to authorize the extension to

use for registering.

4. Verify the user is registered.

Expected 1. The extension should open a new pop-up for Twitter

authentication.

2. Valid Twitter credentials should result in a successful login

and registration.

3. During the registration, extensions should function without

crashing or freezing.

Date-Result 03/2024 - Pass

Test ID TC-3 Category Functional Severity Major

Objective Test case for signing in using Twitter without the Twitter signed in

in the browser

Steps 1. Click the “Sign In with Twitter” button.

2. Enter the valid credentials (username/email and password)

to the opened pop-up or new tab window.

3. Verify the user is signed in.

Expected 1. The extension should open a new pop-up for Twitter

authentication.

2. Valid Twitter credentials should result in a successful login.

3. During the sign-in, extensions should function without

crashing or freezing.

Date-Result 03/2024 - Pass

Test ID TC-4 Category Functional Severity Major

Objective Test case for signing in using Twitter with the Twitter signed in in

the browser

Steps 1. Click the “Sign In with Twitter” button.

2. In the opened pop-up or new tab window, verify the

account to be signed in as the signed-in account in the

browser.

3. Verify the user is signed in.

Expected 1. The extension should open a new pop-up for Twitter

authentication.

2. Valid Twitter credentials should result in a successful login.

3. During the sign-in, extensions should function without

crashing or freezing.

Date-Result 03/2024 - Pass

Test ID TC-5 Category Functional Severity Major

Objective To verify the proper functionality of the delete account feature in

the PostgreSQL database.

Steps 1. Retrieve user information from the database's user table.

2. Delete the user's account from the website application.

3. Verify the absence of the user's information in the user

table.

4. If applicable, check for any associated binary data stored in

the database.

5. Ensure the removal of any password reset requests

associated with the user.

Expected 1. The user's information should no longer be present in the

user table.

2. If applicable, any associated binary data should be properly

removed or flagged as deleted.

3. Password reset requests for the user should no longer be

present.

Date-Result 03/2024 - Pass

Test ID TC-6 Category Functional Severity Major

Objective To verify that the user can successfully set filtering options for

keyword blocking.

Steps 1. Open the extension interface by clicking on the extension

icon.

2. Within the extension interface, locate and navigate to the

"Blockers" section.

3. Identify and navigate to the "Keyword Blocker" option.

4. Set filtering options for keyword blocking by either entering

keywords or selecting existing keywords from the list to

block.

5. Save the changes made by clicking "Apply".

6. Verify that the entered keywords are successfully blocked.

Expected 1. Keywords entered for blocking are saved successfully.

2. Upon accessing a page containing any of the blocked

keywords, the content related to those keywords is blocked

or hidden.

Date-Result 03/2024 - Pass

Test ID TC-7 Category Functional Severity Major

Objective To verify that the user can successfully set filtering options for

category blocking.

Steps 1. Open the extension interface by clicking on the extension

icon.

2. Within the extension interface, locate and navigate to the

"Blockers" section.

3. Identify and navigate to the "Category Blocker" option.

4. Set filtering options for category blocking by selecting

categories to block.

5. Save the changes made by clicking "Apply".

6. Verify that the selected categories are successfully

blocked.

Expected 1. Categories selected for blocking are saved successfully.

2. Upon accessing a page containing content from the

blocked categories, the content is blocked or hidden.

Date-Result 03/2024 - Pass

Test ID TC-8 Category Functional Severity Major

Objective To verify that the user can successfully set filtering options for a

timer.

Steps 1. Open the extension interface by clicking on the extension

icon.

2. Within the extension interface, locate and navigate to the

"Blockers" section.

3. Identify and navigate to the "Timer" option.

4. Set filtering options for the timer by specifying a duration

and start delay for blocking content.

5. Save the changes made by clicking "Apply".

6. Verify that the timer functions as expected, blocking content

for the specified duration.

Expected 1. The timer settings are saved successfully.

2. Content is blocked according to the specified duration after

start delay, and access is restored after the timer expires.

Date-Result 03/2024 - Pass

Test ID TC-9 Category Functional Severity Major

Objective To verify that the user can successfully set multiple filtering

options.

Steps 1. Open the extension interface by clicking on the extension

icon.

2. Within the extension interface, locate and navigate to the

"Blockers" section.

3. Within the "Blockers" section, identify and navigate to the

following filtering options:

1. Keyword Blocker

2. Category Blocker

3. Timer

4. Set filtering options for each of the above options

separately.

5. Save the changes made for each filtering option by clicking

"Apply".

6. Verify that multiple filtering options are enabled

simultaneously.

7. Test by accessing Twitter and observing the application's

behavior with the applied filtering options.

Expected 1. Users can navigate to the "Blockers" section within the

extension interface without difficulty.

2. Filtering options for keyword blocker, category blocker, and

timer are clearly presented and accessible within the

"Blockers" section.

3. Users are able to set and customize filtering options for

each category separately.

4. Changes made to filtering options are saved successfully

without errors.

5. Multiple filtering options work together seamlessly, ensuring

that all specified filters are applied simultaneously when

accessing Twitter.

Date-Result 03/2024 - Pass

Test ID TC-10 Category Functional Severity Major

Objective To verify that the ContentGuard extension can effectively filter

tweets from the tweet feed based on the user's specified filtering

settings.

Steps 1. Open the extension interface by clicking on the extension

icon.

2. Navigate to the "Blockers" section within the extension

interface.

3. Set filtering options for keyword blocker, category blocker,

and timer according to user preferences.

4. Save the changes made to the filtering settings.

5. Access the Twitter feed within the browser.

6. Observe the tweet feed and verify that tweets that match

the specified filtering settings are filtered out from the feed.

7. Verify that tweets that do not match the specified filtering

settings are displayed as usual.

Expected 1. Users can successfully set filtering options for keyword

blocker, category blocker, and timer within the extension

interface.

2. Changes made to the filtering settings are saved without

errors.

3. When accessing the Twitter feed, tweets that match the

specified filtering settings are filtered out and not displayed

in the feed.

4. Tweets that do not match the specified filtering settings are

displayed as usual, ensuring that relevant content is still

accessible to the user.

Date-Result 03/2024 - Pass

Test ID TC-11 Category ML Severity Major

Objective To verify the ML model correctly identifies the category of a group

of tweets

Steps 1. Enter a set of verification data to the input file of the ML

model.

2. Run the ML model with the indicated inputs.

3. Compare the verification data’s result that is human-

verified and the ML model’s result

Expected The ML model needs to get a high accuracy result for the given

tweets

Date-Result 03/2024 - Pass

Test ID TC-12 Category Non ML Severity Major

Objective To verify the ML model responds in a timely matter

Steps 1. Run the ML model with test data

2. Record the time to read the test data and return the

response

Expected The runtime of the ML side of the project should be less than 100

milliseconds for the users to have a seamless experience.

Date-Result 03/2024 - Fail

~3.07 seconds per tweet for the first 100 tweets in this database:

[10]

Test ID TC-13 Category Functional Severity Major

Objective To test if the user’s inputted filter is correctly added to the filter list

Steps 1. Open the extension window

2. Click to the button to see the filters

3. Click to the button to add a filter

4. Choose filter type (keyword/topic)

5. Enter the filter

Expected The added filter should be added to the filter list and stored. The

user can see the newly added filter via the filter page on the

extension.

Date-Result 03/2024 - Pass

Test ID TC-14 Category Functional Severity Major

Objective To test if the blank filter is allowed

Steps 1. Open the extension window

2. Click to the button to see the filters

3. Click to the button to add a filter

4. Choose filter type (keyword/topic)

5. Enter the filter as “” or “ “

Expected The entered filter should not be added to the filter list and the

user needs to see a warning text.

Date-Result 03/2024 - Pass

Test ID TC-15 Category Non Functional Severity Moderate

Objective To test if Twitter feed lags while scrolling with the extension’s

executing speed.

Steps 1. Open Twitter.

2. Scroll really fast.

Expected There should not be any tweets peeking from filters, where it is

shown for a small amount of time then gets hidden.

Date-Result 03/2024 - Pass

Test ID TC-16 Category Functional Severity Moderate

Objective User defined timer constraints for filtering content types cannot

cause integer overflow

Steps 1. Go to the timer page in the extension page.

2. Choose a filter to add extension.

3. Set the time for a really big number that causes integer

overflow.

Expected Maximum allowed duration of a timer should be a limited, non-

problematic value.

Date-Result 03/2024 - Pass (100 hours = 360.000.000 milliseconds can be

exactly represented by JavaScript’s double-precision floating-point

numbers) [11]

Test ID TC-17 Category Functional Severity Moderate

Objective To test the timer, it should be able to continue when it comes to an

unexpected halt

Steps 1. Add a timer for a filter

2. Before the timer runs out, force quit the browser.

3. Reopen Twitter to check if the filter continues to work.

Expected The filter should continue with the current time not resetted.

Date-Result 03/2024 - Pass

Test ID TC-18 Category Functional Severity Moderate

Objective To test the timer, it should be able to continue when the user

changes time zones

Steps 1. Add a timer for a filter

2. Before the timer runs out, force quit the browser.

3. Reopen Twitter to check if the filter continues to work.

Expected The filter should continue with the current time not resetted or

changed.

Date-Result 03/2024 - Pass (Time zones are irrelevant to the code)

Test ID TC-19 Category Functional Severity Moderate

Objective To test if the user with no data can generate a report without

problems

Steps 1. Register to the extension.

2. Without ever browsing Twitter, go to the extension page.

3. Go to creating a report page.

4. Generate report

Expected The user should be able to create a report with no browsing, filter

or timer data.

Date-Result 03/2024 - Pass

Test ID TC-20 Category Back end Severity Major

Objective To test if the backend server handles unexpected requests

gracefully.

Steps 1. Send a malformed request to the backend server

2. Check server logs for error handling and response status.

Expected The back end server should respond with an appropriate error

message and status code.

Date-Result 03/2024 - Pass

Test ID TC-21 Category Back end Severity Major

Objective To verify backend server stability under heavy load.

Steps 1. Send a large number of concurrent requests to the

backend server.

2. Monitor server response times and resource utilization.

Expected The backend should handle the load gracefully without crashing

or significantly slowing down.

Date-Result 03/2024 - Fail

(Server is currently running in our relatively weak personal

computers. For large loads, more processing power and memory

is needed.)

Test ID TC-22 Category Back end Severity Major

Objective To test database backup and recovery procedures.

Steps 1. Simulate a database failure or corruption.

2. Attempt to restore the database from backup.

Expected The database should be successfully restored to its previous state

without data loss.

Date-Result 03/2024 - Fail (Currently, there is no automatic data loss

prevention in case of a failure.)

Test ID TC-23 Category Functional Severity Major

Objective To test extension behavior on different operating systems.

Steps 1. Install and run the extension on various operating systems

(Windows, macOS, Linux).

2. Test extension functionality and performance.

Expected The extension should work consistently across different operating

systems without platform-specific issues.

Date-Result 03/2024 - Pass (Extension runs on every OS that has Chrome

browser.)

Test ID TC-24 Functional Major

Objective To test website compatibility across different browsers.

Steps
1. Access the website using various browsers (Chrome,

Firefox, Safari, etc.).

2. Test extension functionality and performance.

Expected
The website should function consistently and display correctly

across different browsers.

Date-Result 03/2024 - Pass

Since it utilizes Chrome API and that is specific to Chromium-

based browsers such as Google Chrome, Microsoft Edge, Opera,

and others that use the Chromium engine, it will work on these

browsers.

Test ID TC-25 Category Functional Severity Major

Objective To verify extension behavior when multiple instances are running

simultaneously.

Steps 1. Open multiple browser windows or tabs with the extension

installed.

2. Perform actions in one instance and observe the impact on

others.

Expected The extension should handle multiple instances gracefully without

data corruption or unexpected behavior.

Date-Result 03/2024 - Pass

Background can deal with multiple tabs also backend can sustain

all requests because runs asynchronously

https://www.google.com/search?sca_esv=163d01fde80bd9ad&rlz=1C1AVFC_enTR949TR951&sxsrf=ADLYWILF8B-j1vpTdLneWlk3OwjOyxCp2A:1715580860705&q=asynchronously&spell=1&sa=X&ved=2ahUKEwjWpqTe_ImGAxUNRPEDHYG6C0gQkeECKAB6BAgIEAE

Test ID TC-26 Category Functional Severity Major

Objective To test extension performance impact on browser startup time.

Steps 1. Measure browser startup time with and without the

extension enabled.

Expected The extension should not significantly increase browser startup

time.

Date-Result 03/2024 - Pass

Test ID TC-27 Category ML Severity Major

Objective
To test the ML model's ability to handle ambiguous tweets.

Steps
1. Input tweets with ambiguous or mixed content to the ML

model.

Expected
The ML model should handle ambiguous tweets gracefully,

providing accurate categorization or flagging them for further

review.

Date-Result 03/2024 - Pass

It identifies categories correctly.

Test ID TC-28 Category ML Severity Major

Objective
To test the ML model's performance with real-time tweet streams.

Steps
1. Input a continuous stream of tweets to the ML model.

Expected
The ML model should process real-time tweet streams efficiently,

providing timely categorization results without delays.

Date-Result 03/2024 - Pass

It works on a continuous tweet stream because it was designed to

work in that situaion.

Test ID TC-29 Category Functional Severity Moderate

Objective
To test the extension's compatibility with browser extensions.

Steps
1. Install various browser extensions alongside the Twitter

management extension.

2. Test the functionality of both extensions simultaneously.

Expected
The extension should work seamlessly alongside other browser

extensions without causing conflicts or performance issues.

Date-Result 03/2024 - Pass

It works with other extentions

Test ID TC-30 Category ML Severity Moderate

Objective
To test the robustness of the ML model against noisy data.

Steps
1. Inject noisy or irrelevant data into the ML model.

Expected
The ML model should demonstrate resilience to noisy data and

produce accurate results.

Date-Result 03/2024 - Pass

The categorization processes works accordingly.

Test ID TC-31 Category Stress Severity Major

Objective To test system response time under maximum load.

Steps 1. Gradually increase concurrent user requests to the system

maximum.

2. Measure response time for tweet extraction, categorization,

and rendering.

Expected Swift and efficient tweet extraction from the user's DOM.

Smooth and accurate categorization process.

Prompt rendering of categorized tweets in extension interface.

Overall system maintains acceptable response times, ensuring

smooth user experience under maximum load.

Date-Result 03/2024 - Pass

Test ID TC-32 Category ML Severity Major

Objective
To test the ML model's sensitivity to different dialects.

Steps
1. Input tweets in various dialects to the ML model.

Expected
 The ML model should accurately classify tweets across multiple

dialects.

Date-Result 03/2024 - Pass

Keyword block looks for the keyword that is entered and this does

not change the result in different dialects.

Test ID TC-33 Category Stress Severity Major

Objective To test system recovery time after a catastrophic failure.

Steps 1. Simulate a catastrophic failure, such as a complete system

outage, which interrupts the extraction and categorization

processes of the Chrome extension for Twitter.

2. Measure the time taken to detect the failure and initiate

recovery procedures.

3. Identify the steps taken to restore the system to full

functionality, including re-establishing connections with the

server hosting the NLP model.

Expected 1. The system promptly detects the catastrophic failure and

initiates automatic recovery procedures.

2. Upon detection, the system triggers alerts or notifications to

relevant personnel to expedite the recovery process.

3. The system efficiently restores functionality, including re-

establishing connections with the server hosting the NLP

model.

4. The recovery process is swift and effective, minimizing

downtime and ensuring that the Chrome extension resumes

its extraction and categorization tasks without significant

delays.

5. Overall, the system demonstrates robust disaster recovery

capabilities, guaranteeing the continuity of service and

preserving the user experience even in the face of major

disruptions.

Date-Result 03/2024 - Fail

This was not implemented.

Test ID TC-34 Category Security Severity Major

Objective To test user session expiration and logout functionality.

Steps 1. Log in to the extension with a user account.

2. Wait for the session to expire due to inactivity.

3. Attempt to perform actions requiring authentication.

Expected 1. After the session expires, the user should be automatically

logged out and prompted to re-authenticate for security

reasons.

Date-

Result

 03/2024 – Pass

 Because Content Guard uses the OAuth session does not expire and

if the cookies that Firebase manages remained system remembers the

user and allow login. And if the cookies are disabled it requires

authentication again.

Test ID TC-35 Category Model Severity Moderate

Objective To test the ML model's generalization capability across different

Twitter users and profiles.

Steps 1. Train the ML model with data from various Twitter users with

diverse tweeting habits.

Expected The ML model should generalize well and accurately classify

tweets from different users

Date-

Result

 03/2024 – Fail

Our own model is not implemented Chatgpt 3.5 Turbo was

saficient enough. But training a model could be required for other

sites when future site versions implemented.

Test ID TC-36 Category Model Severity Major

Objective To verify the ML model's ability to adapt to changing trends in

Twitter content.

Steps 1. Train the ML model with historical Twitter data.

2. Test the model's performance with recent Twitter data.

Expected The ML model should accurately classify tweets even with evolving

trends and topics.

Date-

Result

 03/2024 - Fail

Our own model is not implemented Chatgpt 3.5 Turbo was

saficient enough. But training a model could be required for other

sites when future site versions implemented.

Test ID TC-37 Category Performance Severity Major

Objective To test the extension's memory usage over a long period.

Steps 1. Monitor the extension's memory usage while it's active for

an extended period (e.g., several hours).

Expected The extension's memory usage should remain stable over time,

without significant memory leaks or excessive consumption.

Date-

Result

 03/2024 – Pass

Test ID TC-38 Category

Performance

Severity Major

Objective To test the responsiveness of the extension interface under heavy

load.

Steps 1. Simulate simultaneous user interactions with the extension

interface.

Expected The extension interface should remain responsive and fluid even

under heavy concurrent usage.

Date-

Result

 03/2024 – Pass

Relatively to our current hardware that runs backend it responding

good for the our test users. Deploying to server would improve this

Test ID TC-39 Category

Performance

Severity Major

Objective To test the extension's performance on low-end devices.

Steps 1. Install the extension on low-end devices with limited

hardware resources.

Expected The extension should remain functional and responsive on low-end

devices without significant performance degradation.

Date-

Result

 03/2024 – Pass

Test ID TC-40 Category Model Severity Major

Objective To test the accuracy of tweet classification using ML.

Steps 1. Input a variety of tweets into the ML model and compare

classifications with ground truth.

Expected The ML model should accurately classify tweets into relevant

categories with high precision and recall.

Date-

Result

 03/2024 – Pass

Chatgpt 3.5 Turbo is very good at classifications

Test ID TC-41 Category UI Severity Major

Objective To test the responsiveness of UI elements across different screen

sizes.

Steps 1. Resize the browser window and observe UI element

responsiveness.

Expected UI elements should adapt smoothly to different screen sizes

without overlapping or becoming too small.

Date-

Result

 03/2024 - Pass

Test ID TC-42 Category Database Severity Moderate

Objective To test database indexing and query optimization.

Steps 1. Execute a series of complex queries against the database,

simulating typical usage scenarios of the Chrome extension

for Twitter. These queries may involve retrieving

categorized tweets, analyzing user engagement statistics,

or accessing historical data.

2. Measure the performance of each query, recording metrics

such as execution time, resource consumption, and query

throughput.

3. Analyze the impact of database indexing on query

performance by comparing the execution times of queries

with and without indexing.

4. Identify any bottlenecks or inefficiencies in query execution,

pinpointing areas where optimization may be necessary.

Expected 1. Database queries should execute efficiently, with

acceptable response times and minimal resource

consumption, ensuring smooth operation of the Chrome

extension.

2. Indexing should significantly improve query performance

where applicable, reducing the time required to retrieve

relevant data from the database.

3. Queries involving commonly accessed data, such as tweet

categories or user engagement statistics, should benefit

from indexing, resulting in faster retrieval times and

enhanced user experience.

4. Any identified bottlenecks or inefficiencies should be

addressed through query optimization techniques, such as

query rewriting, database schema redesign, or indexing

adjustments, to improve overall database performance.

Date-

Result

 03/2024 - Pass

Test ID TC-43 Category Stress Severity Major

Objective To test database performance under high concurrency.

Steps 1. Simulate a high number of concurrent database transactions.

2. Measure database response times and throughput.

Expected The database should handle concurrent transactions efficiently

without significant performance degradation.

Date-

Result

 03/2024 – Pass

Relatively to our currently hardware that runs backend it

responding good for the our test users. Deploying to server would

improve this

Test ID TC-44 Category Stress Severity Major

Objective To test password strength requirements during user registration.

Steps 1. Attempt to register with a weak password (e.g., fewer than

some number of characters, no special characters).

Expected The registration should fail, and the user should be prompted to

choose a stronger password meeting the minimum requirements.

Date-

Result

 03/2024 – Pass

Because Content Guard uses the OAuth password setting is not

required and it has very sequre tokenazation, hence we would not

directly interact with user’s password

Test ID TC-45 Category Stress Severity Major

Objective To test failover and recovery mechanisms during system failures.

Steps 1. Simulate system failures or crashes and observe failover

procedures.

Expected Failover mechanisms should activate seamlessly, and the system

should recover from failures with minimal disruption to service.

Date-Result 03/2024 - Pass

Test ID TC-46 Category Security Severity Critical

Objective To test session management and protection against session

hijacking.

Steps 1. Attempt to hijack user sessions by stealing session tokens

or cookies.

Expected Session tokens and cookies should be securely managed and

protected against unauthorized access or theft.

Date-Result 03/2024 - Pass

(Twitter Authentication is safe.)

Test ID TC-47 Category UI Severity Major

Objective To verify website accessibility compliance.

Steps
1. Test website accessibility using manual inspection.

Expected The website should adhere to accessibility standards, ensuring

usability for users with disabilities.

Date-Result 03/2024 - Pass

Test ID TC-48 Category Security Severity Major

Objective To test system resilience against denial-of-service (DoS) attacks.

Steps 1. Simulate various types of DoS attacks targeting the

system's infrastructure or resources. This may include

flooding the server with excessive requests, overwhelming

network bandwidth, or exploiting vulnerabilities in the

system.

2. Monitor system performance and response times during

the simulated DoS attacks, observing any degradation in

service quality or availability.

3. Analyze the effectiveness of the system's defenses against

DoS attacks, including mechanisms for detecting and

mitigating such threats.

4. Assess the system's ability to maintain service availability

for legitimate users despite the ongoing DoS attacks.

Expected 1. The system should detect and promptly respond to DoS

attacks, implementing countermeasures to mitigate their

impact and maintain service availability.

2. During DoS attacks, the system should dynamically adjust

resource allocation and prioritize legitimate user requests

to ensure continued access to essential functionalities,

such as tweet extraction and categorization.

3. Mechanisms such as rate limiting, IP blocking, or traffic

filtering should be employed to mitigate the effects of DoS

attacks and prevent unauthorized access to the system.

4. The system should be resilient against various types of

DoS attacks, demonstrating the ability to withstand

sustained attacks without significant degradation in service

quality or availability.

5. Continuous monitoring and proactive measures should be

implemented to identify and address potential

vulnerabilities that could be exploited in future DoS attacks,

ensuring ongoing protection of the system's infrastructure

and resources.

Date-Result 03/2024 - Fail

Test ID TC-49 Category Performance Severity Moderate

Objective To test the extension's resource consumption during normal

operation.

Steps 1. Monitor CPU and memory usage while using the extension.

Expected The extension should consume reasonable system resources

and not significantly impact system performance.

Date-Result 03/2024 - Pass

Test ID TC-50 Category Model Severity Major

Objective To verify the ML model's scalability with increasing data volume.

Steps 1. Increase the volume of training data used by the ML model.

Expected The ML model should maintain performance and accuracy even

with large datasets.

Date-Result 03/2024 - Pass

Test ID TC-51 Category Security Severity Major

Objective To test data validation and sanitization processes.

Steps 1. Input malicious or malformed data into input fields.

Expected The system should sanitize inputs and reject potentially harmful

data to prevent injection attacks or other security vulnerabilities.

Date-Result 05/2024 - Pass

Test ID TC-52 Category Functional Severity Minor

Objective Verifying that the user can activate the extension by clicking the

activate button

Steps 1. Click on the activation button on the processing page.

Expected The extension should appear in the browser toolbar due to

activation and the feed must be changed by extension.

Date-Result 05/2024 - Pass

Test ID TC-53 Category Functional Severity Major

Objective Verifying that the user can deactivate the extension by removing

it.

Steps 1. Remove the extension from the browser’s extension page.

Expected The extension should disappear in the browser toolbar due to

activation, and the feed must return to the unchanged version.

Extension’s features should not be visible.

Date-Result 05/2024 - Pass

Test ID TC-54 Category Functional Severity Major

Objective To verify that the user can deactivate the extension by disabling it

Steps 1. Open the browser.

2. Access the browser's extensions management page.

3. Locate the extension in the list of installed extensions.

4. Click on the option to disable the extension.

Expected 1. The extension icon should be grayed out in the browser

toolbar indicating deactivation.

2. The Twitter feed content should return to its original state

without any manipulation.

3. The extension's features should no longer be accessible.

Date-Result 05/2024 - Pass

Test ID TC-55 Category Functional Severity Major

Objective Verify that the user can deactivate the extension by signing out of

the browser.

Steps 1. Sign out from the account in the browser.

Expected The feed content should return to an unchanged state.

Date-Result 05/2024 - Pass

Test ID TC-56 Category Functional Severity Major

Objective To test if the code segment to mutate data structures can be

6. Maintenance Plan and Details

Maintaining the ContentGuard system ensures its smooth operation, security,

and adaptability to evolving user needs and technological advancements. The

maintenance plan encompasses several key areas to address ongoing system

upkeep, including software updates, security measures, user support, and potential

enhancements. This section outlines the maintenance plan and details for

ContentGuard:

6.1 Software Updates:

Regular software updates are essential to incorporate bug fixes, performance

improvements, and feature enhancements. The development team will release

periodic updates to the system's client and server layers. These updates will be

distributed seamlessly to users, ensuring they can access the latest functionalities

and optimizations. Additionally, updates will address compatibility issues with

browser updates, ensuring continued functionality across various platforms.

6.2 Security Measures:

Ensuring the security of user data and system integrity is paramount. The

maintenance plan includes regular security audits and vulnerability assessments to

identify and mitigate potential threats. The server layer will be regularly patched to

injected

Steps 1. Open the extension window

2. Click to the button to see the filters

3. Click to the button to add a filter

4. Choose filter type (keyword/topic)

5. Enter the filter as “var filters = [];”

Expected The filter should not introduce a bug by executing in the code.

Date-Result 03/2024 - Pass

address any known security vulnerabilities, while encryption protocols will be

continuously evaluated and updated to maintain robust data protection measures.

User authentication mechanisms will undergo periodic review to bolster security

against unauthorized access attempts.

6.3 User Support:

Efficient user support is essential to address user inquiries, troubleshoot

issues, and guide system usage. A dedicated support team will be available to assist

users via email, chat, or a ticketing system. User feedback will be actively solicited

and incorporated into future updates and enhancements to improve the overall user

experience. Comprehensive documentation and tutorials will be provided to

empower users to utilize the system's features and functionalities effectively.

6.4 System Monitoring and Performance Optimization:

System performance and usage metrics will be monitored to identify areas for

optimization and performance tuning. This includes monitoring server resources,

database performance, and network latency to ensure optimal system

responsiveness and reliability. Performance optimizations will be implemented

proactively to maintain high system availability and user satisfaction.

6.5 Disaster Recovery and Contingency Planning:

Robust disaster recovery and contingency plans will be established to mitigate

the impact of potential system outages or data loss events. Regular backups of

critical system data will be performed, with redundant storage solutions implemented

to ensure data integrity and availability. Additionally, contingency protocols will be

developed to enable rapid system restoration during unforeseen disruptions,

minimizing downtime and ensuring business continuity.

The maintenance plan outlined above underscores our commitment to

delivering a reliable, secure, and feature-rich user experience with ContentGuard. By

prioritizing software updates, security measures, user support, potential

enhancements, system monitoring, and disaster recovery, we aim to ensure the

long-term success and sustainability of the ContentGuard system.

7. Other Project Elements

7.1. Consideration of Various Factors in Engineering Design

7.1.1 Constraints

7.1.1.1. Time Constraint

● Our project has a time constraint like all the projects. However, since we were

doing a finishing project that needed to be finalized at the end of this term, we

needed to plan all of our work to finish at the end of the semester, more

specifically until our demo and CS Fair.

● To ensure that our time constraint was met, we made a Gantt Chart of our

semester and when to start tasks to ensure that they would be finalized by our

deadline. In this Gantt Chart, we assigned the tasks, the time that we needed

to start them, their importance to our project, how they affect the rest of the

task, and how early they must be started.

● According to this plan, we allocated our tasks in the order that was decided

(with the flexibility to change them if necessary) to the teammates that have

the most proclivity and experience on the subject, and if nobody has these, to

one of the teammates that can create time for the task.

● We checked where we are on our project in weekly meetings and updates on

WhatsApp to see where we are and what steps to take to make the most of

our project in time.

● In this, we needed to be flexible because writing the code, training the model,

etc., is a time-consuming task that must be done early on [3].

7.1.1.2. Resource Constraint

● We needed resources to make our project, and some of these are servers

and APIs, and some of these are budget since the technologies we use might

need one[3].

● To make our project work, we needed to use many technological tools. We

used OpenAI's GPT-3.5 Turbo to train the ML model, SQLite for database

management, Firebase for authentication, React.js for UI development and

many libraries. We tried to choose the most available resources and easily

acquired them.

● Also, because of the budget resource constraint, we are using GPT from

OpenAI GPT-3.5 Turbo to train the ML model. Since it is free, it can cause a

lag in the system as it might work slowly.

● Because Twitter API is used when Firebase connects with it for authentication

but was not a resource the we acquired.

7.1.1.3. Compatibility Constraint

● Since we are creating an extension for Twitter, it needs to work with Twitter.

Especially since we provide the sign-in with the authentication of Twitter. This

makes it necessary for our extension to be compatible with Twitter. We have

achieved this.

● To provide this, we are using the systems that are already compatible with

Twitter while creating our extension like Firebase. Since there are many other

Twitter extensions, we can also learn from them what works and what doesn’t.

● We also try all the codes in the already-built extension to make sure it will be

compatible with Twitter.

● Software compatibility between components of the server layer, such as

JavaScript and SQLite systems, must be compatible with the hardware used.

To ensure this, we aim to choose them to be compatible from the start by

researching and we have achieved this[3].

7.1.1.4. Technology Constraint

● For our project, we need technologies for ML training, authentication, etc. as

mentioned in 7.1.1.2 and the technologies mentioned here were used.

● For the software part of the server, JavaScript is used for the most part.

Databases are planned as an SQL-based system and SQLite was chosen. As

the NLP model, GPT 3.5 Turbo from OpenAI was chosen. This decision was

made because of the speed, the computational power of the model, and it's

financially more sensible . This technology was chosen to be compatible and

most useful for our purposes.

7.1.1.5. Security Constraint

● Since we are using user’s data and making them sign in and register with

Twitter, we must protect their data with encryption or authentication and check

what is available. We used Firebase authentication for this.

7.1.2 Standards

7.1.2.1. Data Security Standards

To ensure robust data security standards for user data stored in the database,

our project will implement OAuth authentication through Twitter for secure user login.

For authentication we used Firebase. We used cookies to transfer sensitive user

data from Twitter and our extension. We established access controls and

authorization mechanisms specifically for tasks using these systems. Furthermore,

regular data backups will be conducted to prevent loss or corruption, and

comprehensive audit trails and logging will monitor database activity, ensuring

accountability and traceability [3].

7.1.2.2. User Privacy Standards

For user privacy standards, our project adopts a privacy-centric approach by

storing tweet content consumed by users locally in Chrome storage, ensuring

sensitive interactions remain under the user's control. Following categorization,

filtering, and blocking operations, related outputs such as category results, filtering

options, and blocking options will be stored in the database, but with anonymization

and encryption so that data should not be linkable to the user. This strategy will

safeguard user privacy, preventing unauthorized access to sensitive information

even in the event of a security breach [3].

7.1.2.3. HTML Scraping Standards

Our project was designed to adhere to ethical and legal HTML scraping

standards by respecting Twitter’s terms of service and adhering to its robots.txt

directives. We prioritize data accuracy and integrity, validate scraped data sources,

and implement error-handling mechanisms to conduct web scraping responsibly and

foster trust with content providers and users [3].

7.1.2.4 Regulatory Compliance

Our project is designed and aimed to ensure adherence to relevant laws and

regulations governing data privacy, security, and online interactions. We will prioritize

compliance with KVKK and other regional data protection laws to safeguard user

privacy and rights. Furthermore, we will ensure compliance with platform-specific

regulations of social media platforms, guaranteeing that our application aligns with

the standards established by Twitter and other platforms. This commitment to

regulatory compliance will not only help mitigate legal risks but also underscore our

dedication to operating ethically and lawfully [3].

7.1.2.5 Ethical Standards

Our project is one that stands by values of integrity, transparency, and

safeguarding user rights. We place a high priority on protecting user privacy and

data, and handling information with cautious attention and solely for its designated

purposes. Moreover, we will uphold transparency in our operations, offering users

clear insights into data collection and its utilization. By tightly adhering to these

ethical standards, our goal is to cultivate trust among users and foster a positive

impact within the digital community [3].

7.2. Ethics and Professional Responsibilities

● While processing the feed of the user, we will process the user's original

paragraphs, sentences, and words, which are the product of their creative

process. Because this data is sensitive and it is the user's right to share it, we

will protect them and not share the data with any other third-party company,

person, etc.

● We will store the data in a secure way to be professional in our act of

protecting user’s rights.

● When storing the login data for the user, we will store them securely and use

hashes to store the passwords to increase privacy and security.

● After a user logs in to Twitter, we are considering giving the user more control

by asking them if they want to launch the application or other measures of

control like stopping the application for once choice and stopping for always

choice might be given to the user.

● Also, after launching the application to be used by people on the internet, we

will make documentation that shows the user to informs the user about these

ethical constraints so that they can choose freely to download or not.

● The data will not be stored so that its source can be linked.

● The data will be analyzed and grouped to minimize biases in the subject, and

experts may be consulted for determination.

● Our team will follow the Ethics of the National Society of Professional

Engineers in this project [8].

● If some features are decided to be paid features or the subscription is added

to the Twitter Content Tracker in the future by the development team, it is

understood by us that the payments system should be secure, and the team

will make their efforts to make it as such [9].

7.3. Teamwork Details

7.3.1. Contributing and functioning effectively on the team

We, as a team, see a considerable part of our responsibility in carrying the Content-

Guard project to success lies in functioning effectively in the team. Thus, we have

decided to track our progress weekly (sometimes two times a week) with discussions

and work allocation updates. We made an initial work allocation with our team

members before the beginning of the semester and made a Gantt chart (which we

update in our weekly discussions if necessary) to allocate the work most effectively.

Deciding the best part for a teammate by making an assessment, according to the

part’s urgency, our teammate’s experience, and their proclivity to the part we made

our current work allocation in a way we believe each teammate can contribute and

function effectively the most as an individual and as a team. Following is a brief

explanation of our current work allocation [3]:

İlayda Zehra Yılmaz: İlayda is dealing with the front end of the project and finding

suitable datasets for the training of the training model. She was responsible for the

Content Guard Home page’s front-end code and she helped in reports as well as

initial research of the project. She has worked as a front-end developer in internships

and projects and is training herself in the datasets.

Gülin Çetinus: Gülin is dealing with the testing and the back end of the project,

mainly on the extension’s development. She has worked on the back end of the

projects for both of her internships. She also worked on this project’s extension part

she established keyword blocker core functionalities and helped with authentication.

Also helped with timer implementation.

Zeynep Derin Dedeler: Zeynep is dealing with HTML scraping for the NPL model

and generally focuses on the backend, background script, and content script

development. She worked with data analysis during her second internship. She

helped with designing extension structure and helped establising keyword blocker

core functionalities. Implemented timer functionalities and related UI

Bengisu Buket Karadoğan: Bengisu is dealing with the NLP model for tweet

classification purposes and communication of the model with extension. She is

interested in the fields of machine learning and natural language processing. She

was responsible for the Backend, implemented most of it, and created

communication between the extension and the home page. Also helped with

authentication, report functionalities and timestamping them.

Burak Öztürk: Burak is dealing with common industry technologies and practices

research, overall project structure planning/designing, and extension development.

He is interested in customer software development and game design and completed

an internship on each of those topics. He Improved the total performance and

worked on the extension part. He also created the structure of the extension part and

did the authentication, helped with timer implementation and related UIs.

7.3.2. Helping creating a collaborative and inclusive environment

As mentioned above in 7.3.1, we tried to create a collaborative environment

through weekly discussions and work allocations. To explain these discussions

more, we were all included to explain or ask questions and all of the members could

bring something to the table because we would lead the conversations in such a way

that everybody would be able to talk. These discussions and work allocations that

were performed by asking everybody's opinion and expertise helped everybody feel

included and created a collaborative environment where we would help each other

with our tasks and questions. To increase the inclusion and collaboration in our

team, we frequently use WhatsApp and Discord for our questions. We upload our

code to GitHub and use Asana to allocate our work. Being in contact always helps us

collaborate faster if a critical problem occurs as well. We also share our work

according to the task's greatness and sometimes work together on the same task.

We also use face to face discussions and studies. We also give the reins on a

subject to a team member that is knowledgeable, and we also take turns in leading

team meetings so that all the members feel the responsibility and we can move

forward effectively with the best ideas. These are all some of the ways that we use to

increase collaboration and inclusiveness as everybody being heard and being helpful

to each other is a very important part of our team structure [3].

7.3.3. Taking lead role and sharing leadership on the team

As a team, we believe that strong and responsible leadership is the wind that

gives the ship that is our project its speed. It enables our collaborative and inclusive

team to be more effective. Therefore we allocated a leadership system in which

every team member leads a specific part of the project, and all of us are responsible

for giving the heads up to the full participation tasks like reports. Because we all

utilize our leadership skills in different tasks, we all become much more experienced

when one of us has to lead others on some new tasks and we can decide who is fit

best to lead that task. We can all trust that leaders are capable of guiding us and

giving us speed in their subjects. For the weekly meetings generally, one of us starts

asking everybody about their work, and that meeting is led by that person largely,

although there is not a rule for this. We, in fact, still keep being the leader in our parts

if we have an idea. The tools used in 7.3.1 and 7.3.2 help us run our tasks smoothly

and efficiently, with all of us collaboratively leading our respective parts. Since we

can all take the reins and lead the next step of our project management process, we

all feel responsible for our success and more confidently take the lead role in the

subject we feel confident in. This ensures our team members are always engaged

since we can have an active leading position on a subject or collaborate with the

current leader on the subject. This ensures effectiveness since we stay active. Of

course, to ensure efficiency when there is an emptiness in leading all the tasks, one

of us goes forward and takes the lead role to start a discussion, propose a meeting,

or motivate others. We take this seriously, so we accomplish no empty lead roles left

to protect our project from ever going astray. The constant feedback of the leaders

and our members who take all the parts of the project seriously is a huge blessing to

our team and leads us to success in sharing the leadership on the team [3].

7.3.4. Meeting objectives

To meet our objectives we have designed a Gantt chart as mentioned above and we

have created deadlines for our tasks in Asana. We have checked that if our objectives would

be met in the time we had for our project and decided the importance and the priority of each

task. Thanks to this approach we have known the stakes of the tasks at hand and how they

affected the chain of tasks that came in the future. So even in the busy times of the

semester, we did lay the groundwork for the next objective so that we would be capable of

implementing most of the initial and vital features of our project. We have kept in touch

regularly using Whatsapp texting and Zoom video calls to plan our meetings, check our

progress, and allocate our work. And we gave all of the teammates the power to call the

team into action when the team is losing its productivity in reaching the objectives. We

realized we needed to put this project into higher priority than most of our lesson’s work at

certain times to move forward. All of the team members being collaborative and helpful as

well as responsible enough to put work on this project helped us meet our objectives.

7.4 New Knowledge Acquired and Applied

We have learned team work and how to function as a team as well as reaching our

goals thanks to this project. We have learned how to effectively use collaboration tools like

Asana as well as effectively doing work allocations to each member. We have learned to

how to communicate in a group environment effectively. Since our project uses many

different technologies we learned about the ones we didn’t have prior knowledge and we

have learned more about the ones we had knowledge about. We have learned Server-Client

architecture and we used this technology for the server managing authentication, databases,

and NLP tasks, while the client handles UI and local storage. We have learned about

extensions specifically Chrome extensions. We used these to apply Chrome API to our

browser extension functionality and DOM manipulation to interact with web page content. Wr

have used how to use a template and used Vision UI template for our home page. Wh have

learned how to make Firebase authentication and wrote our authentication using that so we

could authenticate with user’s Twitter account using the Twitter API authentication. Some of

us learned how to use React as well as some of us needed to learn more about it as using it

on an extension with the complex tasks we had was a whole new skill. We have learned and

used Django for backend development as well as SQLite for database management. We

have learned and integrated ChatGPT 3.5 Turbo for our NPL tasks.

8. Conclusion and Future Work

 In conclusion, ContentGuard emerges as a multifaceted solution meticulously

crafted to address the complex challenges of information overload and time

management prevalent in the dynamic landscape of Twitter. With its array of features

and functionalities, ContentGuard aims to empower users with unprecedented

control over their social media experience. As we look forward to the future of this

project, several key areas for further development and enhancement emerge:

Future Work:

1. Integration of Historical Data and Reports:

● Incorporate older reports into the system to enable users to track their

engagement trends over time.

● Provide insights into long-term patterns and behaviors to facilitate informed

decision-making.

2. Behavioral Analysis and Personalization:

● Implement advanced algorithms to analyze user behavior and preferences.

● Offer personalized recommendations for content filtering and time

management based on individual usage patterns.

3. Continuous Performance Optimization:

● Focus on optimizing content categorization algorithms to improve processing

speed and accuracy.

● Enhance overall system efficiency to ensure a seamless user experience

even during peak usage periods.

4. In-House Model Development:

● Explore the possibility of developing a proprietary machine learning model for

tweet categorization.

● Reduce reliance on external services like ChatGPT 3.5 Turbo, providing

greater flexibility and control over the classification process.

5. Expansion to Other Social Media Platforms:

● Extend ContentGuard's functionality to support additional platforms such as

Threads, Reddit, and YouTube.

● Adapt the system to cater to the unique content consumption patterns and

challenges of each platform.

Model Database:

In preparation for potential in-house model development, the establishment of

a dedicated model database is paramount. This database would serve as a central

repository for:

● Storing essential data required for training and testing the machine learning

model.

● Facilitating ongoing maintenance and optimization of the model through

access to historical training data and performance metrics.

● Supporting seamless integration with the ContentGuard system, ensuring

efficient communication and data exchange between the model and other

system components.

By pursuing these avenues for future work and investing in the development

of advanced functionalities and infrastructure, ContentGuard aims to evolve into a

versatile and indispensable tool for effective content management and user control

across diverse social media platforms.

9. Glossary

Information Overload: A state in which an individual is overwhelmed by the amount

of information available, making it difficult to process effectively.

Artificial Intelligence (AI): The simulation of human intelligence processes by

computer systems.

Machine Learning (ML): A field of AI that focuses on making computers learn and

improve from experience without being directly programmed to do so.

Natural Language Processing (NLP): A field of AI focused on training ML language

models to understand, interpret, and generate human language.

Server-Client Architecture: A network architecture where tasks or processes are

divided between servers (providing role) and clients (requesting role).

10. References

[1] M. Gomez-Rodriguez, K. P. Gummadi, and B. Schoelkopf, “Quantifying

information overload in social media and its impact on social contagions,”

Proceedings of the International AAAI Conference on Web and Social Media, vol.

8, no. 1, pp. 170–179, May 2014, doi: 10.1609/icwsm.v8i1.14549.

[2] K. Bontcheva, G. Gorrell, and B. Wessels, “Social media and information

overload: survey results,” arXiv.org, Jun. 04, 2013. https://arxiv.org/abs/1306.0813

[3] G. Çetinus, Z. D. Dedeler, B. B. Karadoğan, B. Öztürk, and İ. Z. Yılmaz,

“T2321 Content Guard Detailed Design Report,” Mar. 15, 2024

[4] “What is machine learning (ML)?,” IBM, https://www.ibm.com/topics/machine-

learning#:~:text=Resources-

,Take%20the%20next%20step,learn%2C%20gradually%20improving%20its%20a

ccuracy. (accessed Mar. 15, 2024).

[5] “What is natural language processing?,” IBM,

https://www.ibm.com/topics/natural-language-processing (accessed Mar. 15,

2024).

[6] F. Churchville, “What is User Interface (UI)? definition from

searchapparchitecture,” App Architecture,

https://www.techtarget.com/searchapparchitecture/definition/user-interface-UI

(accessed Mar. 15, 2024).

[7] “Kı̇şı̇sel Verı̇lerı̇ Koruma Kurumu: KVKK: Personal Data Protection Authority,”

KVKK, https://kvkk.gov.tr/Icerik/6586/Personal-Data-Protection-Authority

(accessed Mar. 15, 2024).

[8] NSPE, “NSPE Code of Ethics for Engineers,” National Society of Professional

Engineers, Jul. 2019. https://www.nspe.org/resources/ethics/code-ethics

(accessed Nov. 16, 2023).

[9] G. Çetinus, Z. D. Dedeler, B. B. Karadoğan, B. Öztürk, and İ. Z. Yılmaz, “T2321

ContentGurad Analysis and Requirement Report,” Dec. 8, 2023

[10] “Favorited_tweets - dataset by A2liz,” data.world,

https://data.world/a2liz/favorited-tweets/workspace/file?filename=favorite-

tweets.jsonl (accessed May 13, 2024).

[11] “Double-precision floating-point format,” Wikipedia,

https://en.wikipedia.org/wiki/Double-precision_floating-

point_format#Precision_limitations_on_integer_values (accessed May 13, 2024).

